
1

Using the Android* Native

Development Kit (NDK)
Xavier Hallade, Developer Evangelist, Intel Corporation

@ph0b - ph0b.com

2

#dfua

Agenda

• The Android* Native Development Kit (NDK)

• How to use the NDK

• Supporting several CPU architectures

• Debug and Optimization

• Q&A

The Android Native Development Kit (NDK)

4

#dfua

Android* Native Development Kit (NDK)

What is it?
Build scripts/toolkit to incorporate native code in Android* apps via the Java Native Interface

(JNI)

Why use it?
Performance
e.g., complex algorithms, multimedia applications, games

Differentiation
app that takes advantage of direct CPU/HW access

e.g., using SSE4.2 for optimization

Software code reuse

Why not use it?
Performance improvement isn’t always guaranteed, the complexity is…

5

#dfua

PSI

TS

PIDs

Installing the Android* NDK

NDK is a platform dependent archive (self-extracting since r10c).

It provides:

• Build script ndk-build(.cmd)

• Other scripts for toolchains generation,

debug, etc

• Android* headers and libraries

• gcc/clang crosscompilers

• Documentation and samples

(useful and not easy to find online)

6

#dfua

C/C++

Code
Makefile

ndk-
build

Mix with
Java*

GDB
debug

Java

SDK APIs

Native Libs

Android* Application

NDK APIs

C/C++

NDK Application Development

Using JNI

JNI

7

#dfua

NDK Platform

Android* NDK Application

Dalvik* Application

Java Class

Java

Source

Compile

with Javac

Java Class

Java Source

Compile

with Javac

Create C header

with javah -jni

Header file
C/C++ Source

Code

Compile and Link C

Code (ndk-build)

Dynamic

Library (.so)

*.mk

Makefiles

Optional thanks to

JNI_Onload

loads

8

#dfua

Compatibility with Standard C/C++

Bionic C Library:
• Lighter than standard GNU C Library

• Not POSIX compliant

• pthread support included, but limited

• No System-V IPCs

• Access to Android* system properties

Bionic is not binary-compatible with the standard C library

It means you generally need to (re)compile everything using the Android NDK

toolchain

9

#dfua

Android* C++ Support

By default, system is used. It lacks:

Standard C++ Library support (except some headers)

C++ exceptions support

RTTI support

Fortunately, you have other libs available with the NDK:

Runtime Exceptions RTTI STL

system No No No

gabi++ Yes Yes No

stlport Yes Yes Yes

gnustl Yes Yes Yes

libc++ Yes Yes Yes

Choose which library to compile

against in your Makefile

(Application.mk file):

APP_STL := gnustl_shared

Postfix the runtime with _static

or _shared

For using C++ features, you also need to enable these in your Makefile:
LOCAL_CPP_FEATURES += exceptions rtti

How to use the NDK

11

#dfua

1. Create JNI folder for

native sources
3. Create Android.mk

Makefile

2. Reuse or create native

c/c++ sources

4. Call ndk-build to generated shared

libraries into ABI libs folders

Manually Adding Native Code to an Android* Project

12

#dfua

PSI

TS

PIDs

Integrating Native Functions with Java*

Declare native methods in your Android* application (Java*) using the ‘native’ keyword:
public native String stringFromJNI();

Provide a native shared library built with the NDK that contains the methods used by
your application:

libMyLib.so

Your application must load the shared library (before use… during class load for
example):

static {

System.loadLibrary("MyLib");

}

There is two ways to associate your native code to the Java methods: javah and
JNI_OnLoad

13

#dfua

Classic Execution flow

Loading Java Class
(executing static block)

Loading native library

(and calling its JNI_OnLoad)

Native library loaded

Java Class loaded

Executing Java Code

Encountering a native
method

Runtime executes native
method

Returning to Java Code
execution, throwing any

remaining Java exceptions

And later, from any thread:

14

#dfua

Javah Method

jstring

Java_com_example_hellojni_HelloJni_stringFromJNI(JNIEnv* env,

jobject thiz)

{

return (*env)->NewStringUTF(env, "Hello from JNI !");

}

...

{

...

tv.setText(stringFromJNI());

...

}

public native String stringFromJNI();

static {

System.loadLibrary("hello-jni");

}

15

#dfua

Javah Method

“javah” generates the appropriate JNI header stubs from the compiled Java

classes files.

Example:
> javah –d jni –classpath bin/classes com.example.hellojni.HelloJni

Generates com_example_hellojni_HelloJni.h file with this definition:
JNIEXPORT jstring JNICALL

Java_com_example_hellojni_HelloJni_stringFromJNI(JNIEnv *, jobject);

16

#dfua

Android Makefiles (*.mk)

Android.mk
module settings and declarations

include $(CLEAR_VARS)

LOCAL_MODULE := hello-jni

LOCAL_SRC_FILES := hello-jni.c

include $(BUILD_SHARED_LIBRARY)

Predefined macro can be:
BUILD_SHARED_LIBRARY,

BUILD_STATIC_LIBRARY,

PREBUILT_SHARED_LIBRARY, PREBUILT_STATIC_LIBRARY

Other useful variables:

LOCAL_C_INCLUDES := ./headers/

LOCAL_EXPORT_C_INCLUDES := ./headers/

LOCAL_SHARED_LIBRARIES := module_shared

LOCAL_STATIC_LIBRARIES := module_static

Application.mk
Application-wide settings

APP_PLATFORM := android-15

#~=minSDKVersion

APP_CFLAGS := -O3

APP_STL := gnustl_shared #or other STL if

you need extended C++ support

APP_ABI := all #or all32, all64…

APP_OPTIM := release #default

NDK_TOOCLHAIN_VERSION := 4.8 #4.6 is

default, 4.8 brings perfs, 4.9 also but

less stable

Working with the Java Native Interface

18

#dfua

JNI Primitive Types

Java* Type Native Type Description

boolean jboolean unsigned 8 bits

byte jbyte signed 8 bits

char jchar unsigned 16 bits

short jshort signed 16 bits

int jint signed 32 bits

long jlong signed 64 bits

float jfloat 32 bits

double jdouble 64 bits

void void N/A

19

#dfua

JNI Reference Types

jobject

jclass

jstring

jarray

jobjectArray

jbooleanArray

jbyteArray

jcharArray

jshortArray

jintArray

jlongArray

jfloatArray

jdoubleArray

jthrowable

Arrays elements are manipulated using

Get<type>ArrayElements() and Get/Set<type>ArrayRegion()

Don’t forget to call ReleaseXXX() for each GetXXX() call.

20

#dfua

Creating a Java* String

• Memory is handled by the JVM, jstring is always a reference.

• You can call DeleteLocalRef() on it once you finished with it.

Main difference with using JNI from C or in C++ is the nature of “env” as you can see it here.

C:

jstring string =

(*env)->NewStringUTF(env, "new Java String");

C++:

jstring string = env->NewStringUTF("new Java String");

21

#dfua

Memory Handling of Java* Objects

Memory handling of Java* objects is done by the JVM:

• You only deal with references to these objects

• Each time you get a reference, you must not forget to delete it after use

• local references are still automatically deleted when the native call returns to

Java

• References are local by default

• Global references can be created using NewGlobalRef()

22

#dfua

Getting a C string from Java* String

const char *nativeString = (*env)-

>GetStringUTFChars(javaString, null);

…

(*env)->ReleaseStringUTFChars(env, javaString, nativeString);

//more secure, more efficient if you want a copy anyway

int tmpjstrlen = env->GetStringUTFLength(tmpjstr);

char* fname = new char[tmpjstrlen + 1];

env->GetStringUTFRegion(tmpjstr, 0, tmpjstrlen, fname);

fname[tmpjstrlen] = 0;

…

delete fname;

23

#dfua

Calling Java* Methods

On an object instance:
jclass clazz = (*env)->GetObjectClass(env, obj);

jmethodID mid = (*env)->GetMethodID(env, clazz, "methodName",

"(…)…");

if (mid != NULL)

(*env)->Call<Type>Method(env, obj, mid, parameters…);

Static call:
jclass clazz = (*env)->FindClass(env, "java/lang/String");

jmethodID mid = (*env)->GetStaticMethodID(env, clazz, "methodName",

"(…)…");

if (mid != NULL)

(*env)->CallStatic<Type>Method(env, clazz, mid, parameters…);

• (…)…: method signature

• parameters: list of parameters expected by the Java* method
• <Type>: Java method return type

24

#dfua

Handling Java* Exceptions

// call to java methods may throw Java exceptions

jthrowable ex = (*env)->ExceptionOccurred(env);

if (ex!=NULL) {

(*env)->ExceptionClear(env);

// deal with exception

}

(*env)->DeleteLocalRef(env, ex);

25

#dfua

Throwing Java* Exceptions

jclass clazz =

(*env->FindClass(env, "java/lang/Exception");

if (clazz!=NULL)

(*env)->ThrowNew(env, clazz, "Message");

The exception will be thrown only when the JNI call returns to Java*, it

will not break the current native code execution.

Handling ABIs

27

#dfua

Include all ABIs by setting APP_ABI to all in jni/Application.mk:

APP_ABI=all

The NDK will generate optimized code for all target ABIs

You can also pass APP_ABI variable to ndk-build, and specify each ABI:

ndk-build APP_ABI=x86

all32 and all64 are also possible values.

Configuring NDK Target ABIs

Build ARM64 libs

Build x86_64 libs

Build mips64 libs

Build ARMv7a libs

Build ARMv5 libs

Build x86 libs

Build mips libs

28

#dfua

“Fat” APKs

By default, an APK contains libraries for every supported ABIs.

Install lib/armeabi-v7a libs

Install lib/x86 libs

Install lib/x86_64 libraries

libs/x86

libs/x86_64

APK file

…

Libs for the selected ABI are installed, the others remain inside the downloaded APK

… … …

libs/armeabi-v7a

29

#dfua

Multiple APKs

Google Play* supports multiple APKs for the same application.

What compatible APK will be chosen for a device entirely depends on the

android:versionCode

If you have multiple APKs for multiple ABIs, best is to simply prefix your current

version code with a digit representing the ABI:

2310 3310 6310 7310

You can have more options for multiple APKs, here is a convention that will

work if you’re using all of these:

x86ARMv7 ARM64 X86_64

30

#dfua

Uploading Multiple APKs to the store

Switch to Advanced mode before

uploading the second APK.

31

#dfua

3rd party libraries x86 support

Game engines/libraries with x86 support:

• Havok Anarchy SDK: android x86 target available

• Unreal Engine 3: android x86 target available

• Marmalade: android x86 target available

• Cocos2Dx: set APP_ABI in Application.mk

• FMOD: x86 lib already included, set ABIs in Application.mk

• AppGameKit: x86 lib included, set ABIs in Application.mk

• libgdx: x86 supported by default in latest releases

• AppPortable: x86 support now available

• Adobe Air: x86 support now available

• Unity: in beta, will be released soon.

• …

http://docs.madewithmarmalade.com/native/platformguides/androidguide/androidonx86.html

Debugging native code

33

#dfua

Debugging with logcat

NDK provides log API in <android/log.h>:

Usually used through this sort of macro:
#define LOGI(...) ((void)__android_log_print(ANDROID_LOG_INFO, "APPTAG", __VA_ARGS__))

Usage Example:

LOGI("accelerometer: x=%f y=%f z=%f", x, y, z);

int __android_log_print(int prio, const char *tag,

const char *fmt, ...)

34

#dfua

Debugging with logcat

To get more information on native code execution:
adb shell setprop debug.checkjni 1

(already enabled by default in the emulator)

And to get memory debug information (root only):
adb shell setprop libc.debug.malloc 1

-> leak detection
adb shell setprop libc.debug.malloc 10

-> overruns detection
adb shell start/stop -> reload environment

35

#dfua

Debugging with GDB and Eclipse

Native support must be added to your project

Pass NDK_DEBUG=1 APP_OPTIM=debug to the ndk-build command, from the

project properties:

NDK_DEBUG flag is supposed to be automatically set for a

debug build, but this is not currently the case.

36

#dfua

Debugging with GDB and Eclipse*

When NDK_DEBUG=1 is specified, a “gdbserver” file is added to your libraries

37

#dfua

Debugging with GDB and Eclipse*

Debug your project as a native Android* application:

38

#dfua

Debugging with GDB and Eclipse

From Eclipse “Debug” perspective, you can manipulate breakpoints and debug

your project

Your application will run before the debugger is attached, hence breakpoints

you set near application launch will be ignored

Going further with the NDK

40

#dfua

Android* NDK Samples

Sample App Type

hello-jni Call a native function written in C from Java*.

bitmap-plasma Access an Android* Bitmap object from C.

san-angeles EGL and OpenGL* ES code in C.

hello-gl2 EGL setup in Java and OpenGL ES code in C.

native-activity
C only OpenGL sample

(no Java, uses the NativeActivity class).

two-libs Integrates more than one library

…

41

#dfua

JNI_OnLoad Method – Why ?

• Proven method

• No more surprises after methods registration

• Less error prone when refactoring

• Add/remove native functions easily

• No symbol table issue when mixing C/C++ code

• Best spot to cache Java* class object references

42

#dfua

JNI_OnLoad Method

In your library name your functions as you wish and declare the mapping with JVM methods:
jstring stringFromJNI(JNIEnv* env, jobject thiz)

{ return env->NewStringUTF("Hello from JNI !");}

static JNINativeMethod exposedMethods[] = {

{"stringFromJNI","()Ljava/lang/String;",(void*)stringFromJNI},

}

()Ljava/lang/String; is the JNI signature of the Java* method, you can retrieve it using the javap
utility:
> javap -s -classpath bin\classes -p com.example.hellojni.HelloJni

Compiled from "HelloJni.java"

…

public native java.lang.String stringFromJNI();

Signature: ()Ljava/lang/String;

…

43

#dfua

JNI_OnLoad Method

JNI_OnLoad is the library entry point called during load.

Here it applies the mapping defined on the previous slide.

extern "C" jint JNI_OnLoad(JavaVM* vm, void* reserved)

{

JNIEnv* env;

if (vm->GetEnv(reinterpret_cast<void**>(&env), JNI_VERSION_1_6) !=

JNI_OK)

return JNI_ERR;

jclass clazz = env->FindClass("com/example/hellojni/HelloJni");

if(clazz==NULL)

return JNI_ERR;

env->RegisterNatives(clazz, exposedMethods,

sizeof(exposedMethods)/sizeof(JNINativeMethod));

env->DeleteLocalRef(clazz);

return JNI_VERSION_1_6;

}

44

#dfua

Vectorization

SIMD instructions up to SSSE3 available on current Intel® Atom™ processor

based platforms, Intel® SSE4.2 on the Intel Silvermont Microarchitecture

On ARM*, you can get vectorization through the ARM NEON* instructions

Two classic ways to use these instructions:

• Compiler auto-vectorization

• Compiler intrinsics
Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These

optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any

optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors.

Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides

for more information regarding the specific instruction sets covered by this notice.

Notice revision #20110804

SSSE3, SSE4.2
Vector size: 128 bit

Data types:

• 8, 16, 32, 64 bit integer

• 32 and 64 bit float

VL: 2, 4, 8, 16

X2

Y2

X2◦Y2

X1

Y1

X1◦Y1

X4

Y4

X4◦Y4

X3

Y3

X3◦Y3

127 0

45

#dfua

GCC Flags

ffast-math influence round-off of fp arithmetic and so breaks strict IEEE

compliance

The other optimizations are totally safe

Add -ftree-vectorizer-verbose to get a vectorization report
NDK_TOOLCHAIN_VERSION:=4.8 or 4.9 in Application.mk to use latest

version

ifeq ($(TARGET_ARCH_ABI),x86)

LOCAL_CFLAGS += -ffast-math -mtune=atom -mssse3 -mfpmath=sse

endif

ifeq ($(TARGET_ARCH_ABI),x86_64)

LOCAL_CFLAGS += -ffast-math -mtune=slm –msse4.2

endif

Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These

optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any

optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors.

Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides

for more information regarding the specific instruction sets covered by this notice.

Notice revision #20110804

46

#dfua

Android* Studio NDK support

• Having .c(pp) sources inside jni folder ?
• ndk-build automatically called on a generated Android.mk, ignoring any existing .mk

• All configuration done through build.gradle (moduleName, ldLibs, cFlags, stl)

• You can change that to continue relying on your own Makefiles:
http://ph0b.com/android-studio-gradle-and-ndk-integration/

• Having .so files to integrate ?
• Copy them to jniLibs/ABI folders or integrate them from a .aar library

• Use APK splits to generate one APK per arch with a computed versionCode
http://tools.android.com/tech-docs/new-build-system/user-guide/apk-splits

http://ph0b.com/android-studio-gradle-and-ndk-integration/
http://tools.android.com/tech-docs/new-build-system/user-guide/apk-splits

Q&A

xavier.hallade@intel.com

@ph0b – ph0b.com

49

#dfua

Some last comments

• In Application.mk, ANDROID_PLATFORM must be the same as your

minSdkLevel. This is especially important with Android-L.

• With Android L (ART), JNI is more strict than before:
• pay attention to objects and JNIEnv references, threads and methods mapping

