Low Complexity Regularization of Inverse Problems

Joint work with:
Gabriel Peyré Samuel Vaiter Jalal Fadili

www.numerical-tours.com
Inverse Problems

Recovering \(x_0 \in \mathbb{R}^N \) from noisy observations

\[
y = \Phi x_0 + w \in \mathbb{R}^P
\]

\(\Phi : \mathbb{R}^N \mapsto \mathbb{R}^P \) with \(P \ll N \) (missing information)
Inverse Problems

Recovering $x_0 \in \mathbb{R}^N$ from noisy observations

$$y = \Phi x_0 + w \in \mathbb{R}^P$$

$\Phi : \mathbb{R}^N \mapsto \mathbb{R}^P$ with $P \ll N$ (missing information)

Examples: Inpainting, super-resolution, ...
Inverse Problems in Medical Imaging

Tomography projection: \[\Phi x = \left(p_{\theta_k} \right)_{1 \leq k \leq K} \]
Tomography projection: \(\Phi x = (p_{\theta_k})_{1 \leq k \leq K} \)

Magnetic resonance imaging (MRI): \(\Phi x = (\hat{f}(\omega))_{\omega \in \Omega} \)
Inverse Problems in Medical Imaging

Tomography projection: \(\Phi x = (p_{\theta_k})_{1 \leq k \leq K} \)

Magnetic resonance imaging (MRI): \(\Phi x = (\hat{f}(\omega))_{\omega \in \Omega} \)

Other examples: MEG, EEG, ...
Compressed Sensing

\[\tilde{x}_0 \]

[Rice Univ.]
Compressed Sensing

\[y[i] = \langle x_0, \varphi_i \rangle \]

\[P \text{ measures } \ll N \text{ micro-mirrors} \]
Compressed Sensing

\[
y[i] = \langle x_0, \varphi_i \rangle
\]

\(P\) measures \(\ll N\) micro-mirrors
Inverse Problem Regularization

Observations: $y = \Phi x_0 + w \in \mathbb{R}^P$.

Estimator: $x(y)$ depends only on observations y parameter λ
Observations: \(y = \Phi x_0 + w \in \mathbb{R}^P \).

Estimator: \(x(y) \) depends only on parameter \(\lambda \)

Example: variational methods

\[
x(y) \in \operatorname{argmin}_{x \in \mathbb{R}^N} \frac{1}{2} \| y - \Phi x \|^2 + \lambda J(x)
\]
Observations: \(y = \Phi x_0 + w \in \mathbb{R}^P. \)

Estimator: \(x(y) \) depends only on \(\lambda \)

Example: variational methods

\[
x(y) \in \arg\min_{x \in \mathbb{R}^N} \frac{1}{2} \| y - \Phi x \|^2 + \lambda \| J(x) \|
\]

Data fidelity

Regularity

Choice of \(\lambda \): tradeoff

\[
\text{Noise level} \quad \| w \| \quad \text{Regularity of } x_0 \quad \| J(x_0) \|
\]
Inverse Problem Regularization

Observations: $y = \Phi x_0 + w \in \mathbb{R}^P$.

Estimator: $x(y)$ depends only on parameter λ.

Example: variational methods

$\begin{align*}
 x(y) &\in \arg\min_{x \in \mathbb{R}^N} \frac{1}{2} \|y - \Phi x\|^2 + \lambda J(x) \\
 &\text{Data fidelity} \\
 &\text{Regularity}
\end{align*}$

Choice of λ: tradeoff

No noise: $\lambda \to 0^+$, minimize $x(y) \in \arg\min_{\Phi x = y} J(x)$

Noise level $\|w\|$

Regularity of x_0 $J(x_0)$
Inverse Problem Regularization

Observations: \(y = \Phi x_0 + w \in \mathbb{R}^P \).

Estimator: \(x(y) \) depends only on parameter \(\lambda \).

Example: variational methods

\[
x(y) \in \arg\min_{x \in \mathbb{R}^N} \frac{1}{2} \| y - \Phi x \|^2 + \lambda J(x)
\]

Data fidelity

Regularity

Choice of \(\lambda \): tradeoff

No noise: \(\lambda \rightarrow 0^+ \), minimize \(x(y) \in \arg\min_{\Phi x = y} J(x) \)

Performance analysis:

Criteria on \((x_0, \|w\|, \lambda) \) to ensure \(\|x(y) - x_0\| = O(\|w\|) \)

In this context, the regularity of \(x_0 \) is crucial for ensuring model stability and ensuring that the estimator \(x(y) \) is robust to noise. The choice of \(\lambda \) is a tradeoff between data fidelity and model regularity, which is critical in inverse problems to prevent overfitting to noise in the data.
Overview

• Low-complexity Convex Regularization

• Performance Guarantees: L2 Error

• Performance Guarantees: Model Consistency
Union of models for Data Processing

Union of models: $\mathcal{M} \subset \mathbb{R}^N$ subspaces or manifolds.

Synthesis sparsity:

\mathcal{M}

Coefficients x Image Ψx
Union of Models for Data Processing

Union of models: \(\mathcal{M} \subset \mathbb{R}^N \) subspaces or manifolds.

Synthesis sparsity:

Structured sparsity:

Coefficients \(x \) \(\xrightarrow{\Psi} \) Image \(\Psi x \)
Union of Models for Data Processing

Union of models: $\mathcal{M} \subset \mathbb{R}^N$ subspaces or manifolds.

Synthesis sparsity:

Structured sparsity:

Analysis sparsity:

Coefficients x

Image Ψx

Image x

Gradient $D^* x$
Multi-spectral imaging:

\[x_{i,:} = \sum_{j=1}^{r} A_{i,j} S_{j,:} \]
Regularizer: $J : \mathbb{R}^N \rightarrow \mathbb{R}$ convex.

Sub-differential: $\partial J(x) = \{ \eta ; \forall y, J(y) \geq J(x) + \langle \eta, y - x \rangle \}$

Example: $J(x) = |x|$.

![Graph](image)
Regularizer: \(J : \mathbb{R}^N \rightarrow \mathbb{R} \) convex.

Sub-differential: \(\partial J(x) = \{ \eta ; \forall y, J(y) \geq J(x) + \langle \eta, y - x \rangle \} \)

Example: \(J(x) = |x| \).

Example: \(J(x) = \|x\|_1 = \sum_i |x_i| \).

\[
\partial \|x\|_1 = \left\{ \eta \mid \text{supp}(\eta) = I, \forall j \notin I, |\eta_j| \leq 1 \right\}
\]

\(I = \text{supp}(x) = \{i \mid x_i \neq 0\} \)
Subdifferentials and Linear Models

Regularizer: $J : \mathbb{R}^N \rightarrow \mathbb{R}$ convex.

Sub-differential: $\partial J(x) = \{\eta ; \forall y, J(y) \geq J(x) + \langle \eta, y - x \rangle \}$

Example: $J(x) = |x|$.

Example: $J(x) = \|x\|_1 = \sum_i |x_i|$.

$\partial \|x\|_1 = \left\{ \eta \setminus \text{supp}(\eta) = I, \forall j \notin I, |\eta_j| \leq 1 \right\}$

$I = \text{supp}(x) = \{i \mid x_i \neq 0\}$

$T_x = \{\eta \setminus \text{supp}(\eta) = I\}$

Linear model: $T_x = \text{VectHull}(\partial J(x))^\perp$
Partly Smooth Functions

\[J : \mathbb{R}^N \to \mathbb{R} \text{ is partly smooth at } x \text{ for a manifold } \mathcal{M}_x \]

(i) \(J \) is \(C^2 \) along \(\mathcal{M}_x \) around \(x \);

\[J(x) = \max(0, \|x\| - 1) \]
Partly Smooth Functions

\[J : \mathbb{R}^N \to \mathbb{R} \] is partly smooth at \(x \) for a manifold \(\mathcal{M}_x \)

(i) \(J \) is \(C^2 \) along \(\mathcal{M}_x \) around \(x \);

(ii) \(\text{VecHull}(\partial J(x)) \perp = T_x = \text{Tangent}_x(\mathcal{M}_x) \);

\[J(x) = \max(0, \|x\| - 1) \]

(ii) \(\iff \forall h \in T_x \perp, \)

\[t \mapsto J(x + th) \]

is non-smooth at \(t = 0 \).
Partly Smooth Functions

$J : \mathbb{R}^N \to \mathbb{R}$ is partly smooth at x for a manifold \mathcal{M}_x

(i) J is C^2 along \mathcal{M}_x around x;

(ii) $\text{VecHull}(\partial J(x))^\perp = T_x = \text{Tangent}_x(\mathcal{M}_x)$;

(iii) ∂J is continuous on \mathcal{M}_x around x.

$J(x) = \max(0, \|x\| - 1)$

(ii) $\iff \forall h \in T_x^\perp$, $t \mapsto J(x + th)$ is non-smooth at $t = 0$.

[Lewis 2003]
Partly Smooth Functions

$J : \mathbb{R}^N \rightarrow \mathbb{R}$ is partly smooth at x for a manifold M_x

(i) J is C^2 along M_x around x;

(ii) $\text{VecHull}(\partial J(x))^\perp = T_x = \text{Tangent}_x(M_x)$;

(iii) ∂J is continuous on M_x around x.

$J(x) = \max(0, \|x\| - 1)$

(ii) $\iff \forall h \in T_x^\perp,$

$t \mapsto J(x + th)$

is non-smooth at $t = 0$.

Important: in general $M_x \neq T_x$
Examples of Partly-smooth Regularizers

\(\ell^1 \) sparsity: \(J(x) = \|x\|_1 \)

\(\mathcal{M}_x = T_x = \{z ; \text{supp}(z) \subset \text{supp}(x)\} \)
Examples of Partly-smooth Regularizers

\(\ell^1 \) sparsity: \(J(x) = \|x\|_1 \) \(M_x = T_x = \{ z ; \text{supp}(z) \subset \text{supp}(x) \} \)

Structured sparsity: \(J(x) = \sum_b \|x_b\| \) same \(M_x \)

\(J(x) = \|x\|_1 \) \(M_x \) \(J(x) = |x_1| + \|x_{2,3}\| \)
Examples of Partly-smooth Regularizers

\(\ell^1 \) sparsity: \(J(x) = \| x \|_1 \) \quad \mathcal{M}_x = T_x = \{ z ; \text{supp}(z) \subset \text{supp}(x) \} \\

Structured sparsity: \(J(x) = \sum_b \| x_b \| \) \quad \text{same } \mathcal{M}_x \\

Nuclear norm: \(J(x) = \| x \|_* \) \quad \mathcal{M}_x = \{ x ; \text{rank}(z) = \text{rank}(x) \}

\[J(x) = \| x \|_1 \quad \mathcal{M}_x \quad J(x) = | x_1 | + \| x_{2,3} \| \\
J(x) = \| x \|_* \]
Examples of Partly-smooth Regularizers

\(l^1 \) \(\text{sparsity: } J(x) = \|x\|_1 \quad \mathcal{M}_x = T_x = \{z \mid \text{supp}(z) \subset \text{supp}(x)\} \)

\(\text{Structured sparsity: } J(x) = \sum_b \|x_b\| \quad \text{same } \mathcal{M}_x \)

\(\text{Nuclear norm: } J(x) = \|x\|_* \quad \mathcal{M}_x = \{x \mid \text{rank}(z) = \text{rank}(x)\} \)

\(\text{Anti-sparsity: } J(x) = \|x\|_\infty \quad \mathcal{M}_x = T_x = \{z \mid z_I \propto x_I\} \)

\(I = \{i \mid |x_i| = \|x\|_\infty\} \)
Overview

• Low-complexity Convex Regularization

• Performance Guarantees: L2 Error

• Performance Guarantees: Model Consistency
Dual Certificates

Noiseless recovery: \[\min_{\Phi x = \Phi x_0} J(x) \quad (\mathcal{P}_0) \]
Noiseless recovery:
\[\min_{\Phi x = \Phi x_0} J(x) \quad (\mathcal{P}_0) \]

Proposition:
\[x_0 \text{ solution of } (\mathcal{P}_0) \iff \exists \eta \in \mathcal{D}(x_0) \]

Dual certificates:
\[\mathcal{D}(x_0) = \text{Im}(\Phi^*) \cap \partial J(x_0) \]
Dual Certificates

Noiseless recovery:
\[\min_{\Phi x = \Phi x_0} J(x) \quad (P_0) \]

Proposition:
\[x_0 \text{ solution of } (P_0) \iff \exists \eta \in D(x_0) \]

Dual certificates:
\[D(x_0) = \text{Im}(\Phi^*) \cap \partial J(x_0) \]

Example:
\[J(x) = \|x\|_1 \quad \Phi x = x \star \varphi \]
\[D(x_0) = \{ \eta = x \star \varphi ; \eta_i = \text{sign}(x_{0,i}) , \|\eta\|_{\infty} \leq 1 \} \]
Non degenerate dual certificate:
\[\bar{D}(x_0) = \text{Im} (\Phi^*) \cap \text{ri}(\partial J(x_0)) \]

\(\text{ri}(E) = \) relative interior of \(E \)
\(= \) interior for the topology of \(\text{aff}(E) \)
Non degenerate dual certificate:

\[\tilde{\mathcal{D}}(x_0) = \text{Im}(\Phi^*) \cap \text{ri}(\partial J(x_0)) \]

\(\text{ri}(E) = \) relative interior of \(E \)

\(= \) interior for the topology of \(\text{aff}(E) \)

Theorem: [Fadili et al. 2013]

If \(\exists \eta \in \tilde{\mathcal{D}}(x_0) \), for \(\lambda \sim \|w\| \) one has \(\|x^* - x_0\| = O(\|w\|) \)
Dual Certificates and L2 Stability

Non degenerate dual certificate:
\[\mathcal{D}(x_0) = \operatorname{Im}(\Phi^*) \cap \operatorname{ri}(\partial J(x_0)) \]

\(\operatorname{ri}(E) \) = relative interior of \(E \)
\(= \) interior for the topology of \(\operatorname{aff}(E) \)

Theorem:

[Fadili et al. 2013]

If \(\exists \eta \in \mathcal{D}(x_0) \), for \(\lambda \sim \| w \| \) one has \(\| x^* - x_0 \| = O(\| w \|) \)

[Grassmair, Haltmeier, Scherzer 2010]: \(J = \| \cdot \|_1 \).
[Grassmair 2012]: \(J(x^* - x_0) = O(\| w \|) \).
Non degenerate dual certificate:
\[\bar{D}(x_0) = \text{Im}(\Phi^*) \cap \text{ri}(\partial J(x_0)) \]

\[\text{ri}(E) = \text{relative interior of } E \]
\[= \text{interior for the topology of aff}(E) \]

\[x^* = \Phi x = \Phi x_0 \]

Theorem: [Fadili et al. 2013]

If \(\exists \eta \in \bar{D}(x_0) \), for \(\lambda \sim \| w \| \) one has \(\| x^* - x_0 \| = O(\| w \|) \)

[Grassmair, Haltmeier, Scherzer 2010]: \(J = \| \cdot \|_1 \).

[Grassmair 2012]: \(J(x^* - x_0) = O(\| w \|) \).

\(\longrightarrow \) The constants depend on \(N \) ...
Compressed Sensing Setting

Random matrix: \(\Phi \in \mathbb{R}^{P \times N}, \Phi_{i,j} \sim \mathcal{N}(0,1), \) i.i.d.
Compressed Sensing Setting

Random matrix: \(\Phi \in \mathbb{R}^{P \times N} \), \(\Phi_{i,j} \sim \mathcal{N}(0, 1) \), i.i.d.

Sparse vectors: \(J = \| \cdot \|_1 \).

Theorem: Let \(s = \| x_0 \|_0 \). If
\[
P \geq 2s \log \left(\frac{N}{s} \right)
\]
Then \(\exists \eta \in \tilde{D}(x_0) \) with high probability on \(\Phi \).

[Chandrasekaran et al. 2011] [Rudelson, Vershynin 2006]
Compressed Sensing Setting

Random matrix: $\Phi \in \mathbb{R}^{P \times N}$, $\Phi_{i,j} \sim \mathcal{N}(0, 1)$, i.i.d.

Sparse vectors: $J = \| \cdot \|_1$.

Theorem: Let $s = \|x_0\|_0$. If

$$P \geq 2s \log \left(\frac{N}{s} \right)$$

Then $\exists \eta \in \mathcal{D}(x_0)$ with high probability on Φ.

Low-rank matrices: $J = \| \cdot \|_*$.

Theorem: Let $r = \text{rank}(x_0)$. If

$$P \geq 3r(N_1 + N_2 - r)$$

Then $\exists \eta \in \mathcal{D}(x_0)$ with high probability on Φ.

[Chandrasekaran et al. 2011]

[Chandrasekaran et al. 2011]

[Rudelson, Vershynin 2006]
Compressed Sensing Setting

Random matrix: \(\Phi \in \mathbb{R}^{P \times N}, \quad \Phi_{i,j} \sim \mathcal{N}(0, 1), \text{ i.i.d.} \)

Sparse vectors: \(J = \| \cdot \|_1. \)

Theorem: Let \(s = \| x_0 \|_0. \) If
\[
P \geq 2s \log \left(\frac{N}{s} \right)
\]
Then \(\exists \eta \in \tilde{D}(x_0) \) with high probability on \(\Phi. \)

Low-rank matrices: \(J = \| \cdot \|_* \).

Theorem: Let \(r = \text{rank}(x_0). \) If
\[
P \geq 3r(N_1 + N_2 - r)
\]
Then \(\exists \eta \in \tilde{D}(x_0) \) with high probability on \(\Phi. \)

\(\longrightarrow \) Similar results for \(\| \cdot \|_{1,2}, \| \cdot \|_{\infty}. \)

*References:
- [Rudelson, Vershynin 2006]
- [Chandrasekaran et al. 2011]*
Although Theorem \(\| \cdot \|_1 \)
vectors, and we aim to extract the two constituents from the mixture. More precisely, suppose that we measure

Suppose that in a sparse vector in the theoretical and empirical phase transitions. Figure 2.4.

To solve the demixing problem, we describe a convex programming technique proposed in \[\| \cdot \|_1 \] for identifying a low-rank matrix. In each panel, the colormap indicates the empirical probability of success (black = 0%; white = 100%). The yellow curve marks the theoretical prediction of the phase transition from Theorem 2.6.

For more information, see \[\| \cdot \|_1 \] and \[\| \cdot \|_* \] from Sections 2.2.

From [Amelunxen et al. 2013]
Overview

- Low-complexity Convex Regularization

- Performance Guarantees: L2 Error

- Performance Guarantees: Model Consistency
Minimal-norm certificate:
\[\eta_0 = \arg\min_{\eta = \Phi^* q \in \partial J(x_0)} \| q \| \]
Minimal-norm certificate:

\[\eta_0 = \arg\min_{\eta=\Phi^* q \in \partial J(x_0)} \|q\| \]

\[\partial J(x_0) \subset A(x_0) = \text{AffHull}(\partial J(x_0)) \]

Case \(J = \| \cdot \|_1 \)
Minimal Norm Certificate

Minimal-norm certificate:
\[\eta_0 = \underset{\eta = \Phi^* q \in \partial J(x_0)}{\text{argmin}} \| q \| \]

\[\partial J(x_0) \subset A(x_0) = \text{AffHull}(\partial J(x_0)) \]

Linearized pre-certificate:
\[\eta_F = \underset{\eta = \Phi^* q \in A(x_0)}{\text{argmin}} \| q \| \]

Case \(J = \| \cdot \|_1 \)

\[T = T_{x_0} \]

\[\partial J(x_0) \]

\[A(x_0) \]
Minimal-norm certificate:
\[\eta_0 = \arg \min_{\eta = \Phi^* q \in \partial J(x_0)} \|q\| \]

\[\partial J(x_0) \subset A(x_0) = \text{AffHull}(\partial J(x_0)) \]

Linearized pre-certificate:
\[\eta_F = \arg \min_{\eta = \Phi^* q \in A(x_0)} \|q\| \]

\[\rightarrow \eta_F \text{ is computed by solving a linear system.} \]

\[\rightarrow \text{One does not always have } \eta_F \in D(x_0) ! \]
Minimal-norm certificate:
\[\eta_0 = \arg\min_{\eta = \Phi^* q \in \partial J(x_0)} \| q \| \]

Thus \(\partial J(x_0) \subset A(x_0) = \text{AffHull}(\partial J(x_0)) \)

Linearized pre-certificate:
\[\eta_F = \arg\min_{\eta = \Phi^* q \in A(x_0)} \| q \| \]

\(\eta_F \) is computed by solving a linear system.

\(\eta_F \) does not always belong to \(D(x_0) \).!
Theorem: If $\eta_F \in \bar{D}(x_0)$, there exists C such that if

$$\max (\lambda, \|w\|/\lambda) \leq C$$

the unique solution x^* of $P_\lambda(y)$ for $y = \Phi x_0 + w$ satisfies

$$x^* \in M_{x_0} \quad \text{and} \quad \|x^* - x_0\| = O(\|w\|, \lambda)$$

[Vaiter et al. 2014]
Theorem: If \(\eta_F \in \bar{D}(x_0) \), there exists \(C \) such that if

\[
\max (\lambda, \| w \| / \lambda) \leq C
\]

the unique solution \(x^* \) of \(\mathcal{P}_\lambda(y) \) for \(y = \Phi x_0 + w \) satisfies

\[
x^* \in \mathcal{M}_{x_0} \quad \text{and} \quad \| x^* - x_0 \| = O(\| w \|, \lambda)
\]

Previous works:

[Fuchs 2004]: \(J = \| \cdot \|_1 \).

[Bach 2008]: \(J = \| \cdot \|_{1,2} \) and \(J = \| \cdot \|_* \).

[Vaiter et al. 2011]: \(J = \| D^* \cdot \|_1 \).
Compressed Sensing Setting

Random matrix: \(\Phi \in \mathbb{R}^{P \times N}, \quad \Phi_{i,j} \sim \mathcal{N}(0, 1), \) i.i.d.

Sparse vectors: \(J = \| \cdot \|_1. \)

Theorem: Let \(s = \| x_0 \|_0. \) If

\[
P > 2s \log(N)
\]

Then \(\eta_0 \in \bar{D}(x_0) \) with high probability on \(\Phi. \)

[Wainwright 2009]
[Dossal et al. 2011]
Compressed Sensing Setting

Random matrix: \(\Phi \in \mathbb{R}^{P \times N}, \quad \Phi_{i,j} \sim \mathcal{N}(0,1), \) i.i.d.

Sparse vectors: \(J = \| \cdot \|_1. \)

Theorem: Let \(s = \| x_0 \|_0. \) If

\[
P > 2s \log(N)
\]

Then \(\eta_0 \in \bar{D}(x_0) \) with high probability on \(\Phi. \)

Phase transitions:

- **L^2 stability**
 - \(P \sim 2s \log(N/s) \)

vs.

Model stability

- \(P \sim 2s \log(N) \)

[Wainwright 2009]
[Dossal et al. 2011]
Compressed Sensing Setting

Random matrix: \(\Phi \in \mathbb{R}^{P \times N} \), \(\Phi_{i,j} \sim \mathcal{N}(0, 1) \), i.i.d.

Sparse vectors: \(J = \| \cdot \|_1 \).

Theorem: Let \(s = \| x_0 \|_0 \). If

\[
P > 2s \log(N)
\]

Then \(\eta_0 \in \widetilde{D}(x_0) \) with high probability on \(\Phi \).

Phase transitions:

- \(L^2 \) stability: \(P \sim 2s \log(N/s) \)
- Model stability: \(P \sim 2s \log(N) \)

\(\rightarrow \) Similar results for \(\| \cdot \|_1,2, \| \cdot \|_*, \| \cdot \|_\infty \).
Compressed Sensing Setting

Random matrix: \(\Phi \in \mathbb{R}^{P \times N}, \; \Phi_{i,j} \sim \mathcal{N}(0,1), \) i.i.d.

Sparse vectors: \(J = \| \cdot \|_1. \)

Theorem: Let \(s = \| x_0 \|_0. \) If

\[
P > 2s \log(N)
\]

Then \(\eta_0 \in \tilde{D}(x_0) \) with high probability on \(\Phi. \)

Phase transitions: \(L^2 \) stability \(P \sim 2s \log(N/s) \) vs. Model stability \(P \sim 2s \log(N) \)

\[\rightarrow\] Similar results for \(\| \cdot \|_{1,2}, \| \cdot \|_*, \| \cdot \|_\infty. \)

\[\rightarrow\] Not using RIP technics (non-uniform result on \(x_0). \)
$\Phi x = \sum_i x_i \varphi(\cdot - \Delta i)$

$J(x) = \|x\|_1$

Increasing Δ:

\rightarrow reduces correlation.

\rightarrow reduces resolution.
\[\Phi x = \sum_i x_i \varphi(\cdot - \Delta i) \]

\[J(x) = \|x\|_1 \]

Increasing \(\Delta \):
- reduces correlation.
- reduces resolution.

\[I = \{ j \mid x_0(j) \neq 0 \} \]
\[\|\eta_{F,I^c}\|_\infty < 1 \]

\[\eta_0 = \eta_F \in \bar{D}(x_0) \]

support recovery.
Conclusion

Partial smoothness: encodes models using singularities.
Conclusion

Partial smoothness: encodes models using singularities.

Performance measures L^2 error model \rightarrow different CS guarantees
Conclusion

Partial smoothness: encodes models using singularities.

Performance measures L^2 error \models different CS guarantees

Specific certificate: η_0, η_F, \cdots
Performance measures L^2 error model different CS guarantees

Partial smoothness: encodes models using singularities.

Open problems:
- CS performance with arbitrary gauges.
- Infinite dimensional regularizations (BV, ...)
- Convergence discrete \rightarrow continuous.