Structural resolution for Abstract Compilation of Object-Oriented Languages

Luca Franceschini ¹ Davide Ancona ¹
Ekaterina Komendantskaya ²

¹Department of Informatics, Bioengineering, Robotics and Systems Engineering
University of Genoa

²Department of Computer Science
Heriot-Watt University of Edinburgh

Workshop on Coalgebra, Horn Clause Logic Programming and Types, 29th November 2016, Edinburgh, UK
Abstract compilation

Abstract compilation: encoding of source code in a logic program P and then write type-checking/inference queries to be solved w.r.t. to P (Ancona and Lagorio, 2009).
Abstract compilation

Abstract compilation: encoding of source code in a logic program P and then write type-checking/inference queries to be solved w.r.t. to P (Ancona and Lagorio, 2009).

- types are terms
Abstract compilation

Abstract compilation: encoding of source code in a logic program P and then write type-checking/inference queries to be solved w.r.t. to P (Ancona and Lagorio, 2009).

- types are terms
- inductive semantics is not enough
Abstract compilation

Abstract compilation: encoding of source code in a logic program P and then write type-checking/inference queries to be solved w.r.t. to P (Ancona and Lagorio, 2009).

- types are terms
- inductive semantics is not enough
- the system is parametric w.r.t. the resolution method
Contents

Corecursion in abstract compilation
 Co-LP and abstract compilation
 S-resolution & abstract compilation

Productivity of logic programs

Conclusions
Induction and coinduction

Finite derivations

▶ SLD resolution

Infinite derivations

▶ Co-LP (Simon et al., 2006): terms and derivations can be cyclic (a.k.a. regular or rational)

▶ S-resolution (Komendantskaya and Johann, 2015): coinduction is not limited to cyclic terms and proofs but logic programs must be productive
Induction and coinduction

Finite derivations

- SLD resolution

Infinite derivations

- Co-LP (Simon et al., 2006): terms and derivations can be cyclic (a.k.a. regular or rational)
- S-resolution (Komendantskaya and Johann, 2015): coinduction is not limited to cyclic terms and proofs but logic programs must be productive

Two different (sound but not complete) implementations for the greatest complete fixed-point semantics. Which one to choose?
Co-LP & abstract compilation

class Factorial extends Object {
 Factorial() {
 super();}

 compute(int n) {
 // no return type annotation
 if (n <= 0) 1
 else n * this.compute(n-1) }
}
class Factorial extends Object {
 Factorial() { super(); }

 compute(int n) { // no return type annotation
 if (n <= 0) 1
 else n × this.compute(n−1) }
 }

new Factorial().compute(4)
class Factorial extends Object {
 Factorial() {
 super();
 }

 compute(int n) {
 // no return type annotation
 if (n <= 0) 1
 else n * this.compute(n - 1)
 }
}

new Factorial().compute(4)

new(factorial, [], F) ∧ invoke(F, compute, [int], T)
Co-LP & abstract compilation

\[\text{new}(\text{factorial}, [], F) \land \text{invoke}(F, \text{compute}, [\text{int}], T) \]

\[\vdots \]

\[\text{invoke}(F, \text{compute}, [\text{int}], T) \]

\[\vdots \]

\[\text{invoke}(F, \text{compute}, [\text{int}], \text{int}) \]

\[\vdots \]

\[\text{invoke}(F, \text{compute}, [\text{int}], \text{int}) \]
Co-LP & abstract compilation

\[\text{new(}\text{factorial, [], } F) \land \text{invoke}(F, \text{compute}, [\text{int}], T) \]

\[\vdots \]

\[\text{invoke}(F, \text{compute}, [\text{int}], T) \]

\[\vdots \]

\[\text{invoke}(F, \text{compute}, [\text{int}], \text{int}) \]

\[\vdots \]

\[\text{invoke}(F, \text{compute}, [\text{int}], \text{int}) \]

Successful derivation in Co-LP!
S-resolution & abstract compilation

Not all infinite derivations are cyclic though...
S-resolution & abstract compilation

Not all infinite derivations are cyclic though...

class List extends Object {
 ...

 buildList(n, l) {
 if (n ≤ 0) l
 else this.buildList(n-1, new NEList(n, l))
 }
}
Not all infinite derivations are cyclic though...

```java
class List extends Object {
    ...

    buildList(n, l) {
        if (n <= 0) l
        else this.buildList(n-1, new NEList(n, l))
    }

    new List().buildList(n, new EList())
```
Not all infinite derivations are cyclic though…

class List extends Object {
 ...

 buildList(n, l) {
 if (n ≤ 0) l
 else this.buildList(n−1, new NEList(n, l))
 }

 new List().buildList(n, new EList())

 invoke(L, buildList, [int, E], R)
S-resolution & abstract compilation

```java
new List().buildList(n, new EList())
```

```
invoke(L, buildList, [int, E], R)
  :

invoke(L, buildList, [int, E'], R')
  :

invoke(L, buildList, [int, E''], R'')
  :
```
S-resolution & abstract compilation

\texttt{new List().buildList(n, new EList())}

\begin{align*}
\text{invoke}(L, buildList, [\textit{int}, E, R]) \\
\vdots \\
\text{invoke}(L, buildList, [\textit{int}, E', R']) \\
\vdots \\
\text{invoke}(L, buildList, [\textit{int}, E'', R'']) \\
\vdots
\end{align*}

Co-LP: infinite derivation...
S-resolution: success!

\[R = E \lor \text{obj}(\text{nelist}, [\text{head} : \textit{int}, \text{tail} : R']) \]
Contents

Corecursion in abstract compilation
 Co-LP and abstract compilation
 S-resolution & abstract compilation

Productivity of logic programs

Conclusions
Productivity

S-resolution does not come for free: logic programs have to be *productive*.
Productivity

S-resolution does not come for free: logic programs have to be *productive*.

\[
p(f(X)) \leftarrow p(X) \\
p(X) \leftarrow p(X)
\]
Productivity

S-resolution does not come for free: logic programs have to be productive.

\[p(f(X)) \leftarrow p(X) \]

\[p(X) \leftarrow p(X) \]

S-resolution is strictly more powerful than Co-LP only for productive logic programs.
Productivity

Can we make arbitrary logic programs productive?
Productivity

Can we make arbitrary logic programs productive?

\[p(X) \leftarrow p(X) \]

\[p(X, f(Y)) \leftarrow p(X, Y) \]

More generally...

\[p(\overline{t}^n) \leftarrow p_1(\overline{t_1}^{n_1}) \land \cdots \land p_m(\overline{t_m}^{n_m}) \]

\[p(\overline{t}^n, f(X_1, \ldots, X_m)) \leftarrow p_1(\overline{t_1}^{n_1}, X_1) \land \cdots \land p_m(\overline{t_m}^{n_m}, X_m) \]
A simple transformation

A logic program P is a set $\{C_1, \ldots, C_n\}$ of n Horn clauses. The transformation $[\cdot]$ is inductively defined on the structure of logic programs (Fu and Komendantskaya, 2017).
A simple transformation

A logic program P is a set $\{ C_1, \ldots, C_n \}$ of n Horn clauses. The transformation $\llbracket \cdot \rrbracket$ is inductively defined on the structure of logic programs (Fu and Komendantskaya, 2017).

\[
\llbracket P \rrbracket = \llbracket \{ C_1, \ldots, C_n \} \rrbracket = \{ \llbracket C_1 \rrbracket_{\kappa_1}, \ldots, \llbracket C_n \rrbracket_{\kappa_n} \}
\]

\[
\llbracket C \rrbracket_{\kappa} = \llbracket A \leftarrow A_1 \land \cdots \land A_n \rrbracket_{\kappa} = \llbracket A \rrbracket_{\kappa}(x_1, \ldots, x_n) \leftarrow \llbracket A_1 \rrbracket_{x_1} \land \cdots \land \llbracket A_n \rrbracket_{x_n}
\]

\[
\llbracket A \rrbracket_\tau = \llbracket p(t_1, \ldots, t_n) \rrbracket_\tau = p(t_1, \ldots, t_n, \tau)
\]
A simple transformation

A logic program P is a set $\{C_1, \ldots, C_n\}$ of n Horn clauses. The transformation $[-]$ is inductively defined on the structure of logic programs (Fu and Komendantskaya, 2017).

$$[P] = [[\{C_1, \ldots, C_n\}] = \{[C_1]_{\kappa_1}, \ldots, [C_n]_{\kappa_n}\}

\lfloor C \rfloor_{\kappa} = \lfloor A \leftarrow A_1 \land \cdots \land A_n \rfloor_{\kappa} = \lfloor A \rfloor_{\kappa}(X_1, \ldots, X_n) \leftarrow \lfloor A_1 \rfloor_{X_1} \land \cdots \land \lfloor A_n \rfloor_{X_n}

\lfloor A \rfloor_{\tau} = \lfloor p(t_1, \ldots, t_n) \rfloor_{\tau} = p(t_1, \ldots, t_n, \tau)

\lfloor G \rfloor = \lfloor \leftarrow A_1 \land \cdots \land A_n \rfloor = \leftarrow \lfloor A_1 \rfloor_{X_1} \land \cdots \land \lfloor A_n \rfloor_{X_n}$$
Example of transformation

\[
\begin{cases}
\text{subclass}(A, A) \leftarrow \text{class}(A) \\
\text{subclass}(A, \text{object}) \leftarrow \text{class}(A) \\
\text{subclass}(A, C) \leftarrow \text{extends}(A, B) \land \text{subclass}(B, C)
\end{cases}
\]
Example of transformation

\[
\begin{bmatrix}
 \text{subclass}(A, A) & \leftarrow & \text{class}(A) \\
 \text{subclass}(A, \text{object}) & \leftarrow & \text{class}(A) \\
 \text{subclass}(A, C) & \leftarrow & \text{extends}(A, B) \land \text{subclass}(B, C)
\end{bmatrix}
\]

\[
\left[\text{subclass}(A, A) \leftarrow \text{class}(A) \right]_{\kappa_1}
\]

\[
= \left[\text{subclass}(A, \text{object}) \leftarrow \text{class}(A) \right]_{\kappa_2}
\]

\[
\left[\text{subclass}(A, C) \leftarrow \text{extends}(A, B) \land \text{subclass}(B, C) \right]_{\kappa_3}
\]
Example of transformation

<table>
<thead>
<tr>
<th>Transformation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>subclass(A, A) ← class(A)</code></td>
<td>Subclass of same class</td>
</tr>
<tr>
<td><code>subclass(A, object) ← class(A)</code></td>
<td>Subclass of object class</td>
</tr>
<tr>
<td><code>subclass(A, C) ← extends(A, B) ∧ subclass(B, C)</code></td>
<td>Subclass of extended class</td>
</tr>
</tbody>
</table>

\[
\begin{align*}
 \text{[} & \text{subclass}(A, A) \leftarrow \text{class}(A) \text{]}_{\kappa_1} \\
 = & \text{[} \text{subclass}(A, object) \leftarrow \text{class}(A) \text{]}_{\kappa_2} \\
 \text{[} & \text{subclass}(A, C) \leftarrow \text{extends}(A, B) \land \text{subclass}(B, C) \text{]}_{\kappa_3}
\end{align*}
\]

\[
\begin{align*}
 \text{[} & \text{subclass}(A, A)]_{\kappa_1}(X) \leftarrow \text{[} \text{class}(A) \text{]}_X \\
 = & \text{[} \text{subclass}(A, object)]_{\kappa_2}(X) \leftarrow \text{[} \text{class}(A) \text{]}_X \\
 \text{[} & \text{subclass}(A, C)]_{\kappa_3}(X, Y) \leftarrow \text{[} \text{extends}(A, B) \text{]}_X \land \text{[} \text{subclass}(B, C) \text{]}_Y
\end{align*}
\]
Example of transformation

\[
\begin{align*}
\text{subclass}(A, A) & \leftarrow \text{class}(A) \\
\text{subclass}(A, \text{object}) & \leftarrow \text{class}(A) \\
\text{subclass}(A, C) & \leftarrow \text{extends}(A, B) \land \text{subclass}(B, C)
\end{align*}
\]
Properties of $\llbracket \neg \rrbracket$

- Logic programs can be made productive by construction (productivity checking is hard!)
Properties of $\llbracket \cdot \rrbracket$

- Logic programs can be made productive by construction (productivity checking is hard!)
- Simple, easy to implement, inductive and compositional
Properties of $[-]$:

- Logic programs can be made productive by construction (productivity checking is hard!)
- Simple, easy to implement, inductive and compositional
- *Sound and complete both inductively and coinductively!*

Given a logic program P and an atom A, for some term τ:

$$A \in \text{M}_P \iff J_A K \tau \in \text{M}_{J P K}$$

M_P and $\text{M}_{co P}$ are the inductive and coinductive model of P, respectively.
Properties of \mathbb{J}−

- Logic programs can be made productive by construction (productivity checking is hard!)
- Simple, easy to implement, inductive and compositional
- **Sound and complete both inductively and coinductively!**
 Given a logic program P and an atom A, for some term τ:

 $A \in M_P \iff \llbracket A \rrbracket_\tau \in M_{[P]}$

 $A \in M^c_P \iff \llbracket A \rrbracket_\tau \in M^{co}_{[P]}$

 (M_P and M^c_P are the inductive and coinductive model of P, respectively)
Contents

Corecursion in abstract compilation
 Co-LP and abstract compilation
 S-resolution & abstract compilation

Productivity of logic programs

Conclusions
Conclusions

The system we propose is divided into three phases:

1. abstract compilation (object-oriented source \Rightarrow logic program)
2. transformation ensuring productivity
3. S-resolution for type-checking/inference queries

Pros:
- very precise static type analysis for object-oriented languages
- support for parametric and data polymorphism
- modularity: the system is parametric w.r.t. the resolution method
- inference and type annotation work together seamlessly

Cons:
- sometimes inferred types may not have a finite regular representation
- (probably) undecidable: union and record types together are very expressive
Conclusions

The system we propose is divided into three phases:

1. abstract compilation (object-oriented source \(\mapsto\) logic program)
2. transformation ensuring productivity
3. S-resolution for type-checking/inference queries

Pros:

- very precise static type analysis for object-oriented languages
- support for parametric and data polymorphism
- modularity: the system is parametric w.r.t. the resolution method
- inference and type annotation work together seamlessly
Conclusions

The system we propose is divided into three phases:
1. abstract compilation (object-oriented source \(\leadsto\) logic program)
2. transformation ensuring productivity
3. S-resolution for type-checking/inference queries

Pros:
- very precise static type analysis for object-oriented languages
- support for parametric and data polymorphism
- modularity: the system is parametric w.r.t. the resolution method
- inference and type annotation work together seamlessly

Cons:
- sometimes inferred types may not have a finite regular representation
- (probably) undecidable: union and record types together are very expressive
Related work

D. Ancona and G. Lagorio.
Coinductive type systems for object-oriented languages.
ECOOP, 2009.

L. Simon, A. Mallya, A. Bansal and G. Gupta.
Coinductive logic programming.

E. Komendantskaya and P. Johann.
Submitted to ACM Transactions in Computational Logic, 2015.

P. Fu and E. Komendantskaya.
Operational semantics of resolution and productivity in Horn clause logic.