Under-Sampling the Minority Class to Improve the Performance of Over-Sampling Algorithms in Imbalanced Data Sets

Romero F. A. B. de Morais (rfabm@cin.ufpe.br)
Germano C. Vasconcelos (gcv@cin.ufpe.br)

Center for Informatics
Federal University of Pernambuco

IJCAI Workshop on Learning in the Presence of Class Imbalance and Concept Drift, August 2017
Table of Contents

Motivation

Neighbourhood of Influence

k-INOS

Experimentation

Summary
Table of Contents

Motivation

Neighbourhood of Influence

k-INOS

Experimentation

Summary
Motivation

- Many over-sampling algorithms available.

- Majority of them utilise all the examples in the minority class during the over-sampling process.

- ADASYN, SMOTE, RWO, …

- Under-sampling the minority class before over-sampling is rarely attempted.
Table of Contents

Motivation

Neighbourhood of Influence

\(k \)-INOS

Experimentation

Summary
Imbalanced Scenario
Imbalanced Scenario
k-Nearest Neighbours
Reverse k-Nearest Neighbours
\textit{k-Influential Neighbourhood}
Modified k-Influential Neighbourhood
Table of Contents

Motivation

Neighbourhood of Influence

k-INOS

Experimentation

Summary
k-INOS Algorithm

input: D: Imbalanced Data Set
 k: Number of neighbours to compute k-IN
 τ: k-IN size threshold
 ϕ: Over-sampling function

output: D*: A more balanced version of D

1. For each minority class example in D compute its modified k-IN
2. Remove from D all the minority class examples that have a modified k-IN smaller than τ
3. Call ϕ on D
4. Add back the examples removed in the second step to the over-sampled data
2-D Example - SMOTE vs. k-INOS
Mammography Data Set
Mammography Data Set - SMOTE vs. k-INOS
Table of Contents

Motivation

Neighbourhood of Influence

k-INOS

Experimentation

Summary
Settings

- 50 imbalanced data sets.
- 5 base classifiers.
- 7 over-sampling algorithms.
- 5 performance metrics.
- 5×2-fold cross-validation to assess performance.
- Wilcoxon signed-ranks test to analyse performance difference between over-sampling algorithms with and without k-INOS.
Results

Accuracy Significantly increased for most combinations of classifier and over-sampling algorithm.

AUROC Increased most of the time for the GBM and 3-NN classifiers and half the time for DT.

F1 Increased most of the time for the DT, GBM, 3-NN, and SVM classifiers. Many significant increases for the DT, GBM, and 3-NN classifiers.

Recall Significantly decreased for most combinations of classifier and over-sampling algorithm.

Precision Significantly increased for almost all combinations of classifier and over-sampling algorithm.
Table of Contents

Motivation

Neighbourhood of Influence

k-INOS

Experimentation

Summary
Advantages

- A general wrapper for over-sampling algorithms.
- Increases the performance of most metrics especially for weak classifiers.
- Easy to implement.
Disadvantages

▶ Computation of the neighbourhood of influence might be expensive.

▶ Does not seem to work well with strong classifiers.

▶ Decreases Recall.
Future Work

- Analyse in which situations k-INOS is likely to attain performance improvements.

- Develop new sampling algorithms based on the concept of the neighbourhood of influence.
Under-Sampling the Minority Class to Improve the Performance of Over-Sampling Algorithms in Imbalanced Data Sets

Romero F. A. B. de Morais (rfabm@cin.ufpe.br)
Germano C. Vasconcelos (gcv@cin.ufpe.br)

Center for Informatics
Federal University of Pernambuco

IJCAI Workshop on Learning in the Presence of Class Imbalance and Concept Drift, August 2017